matrix !== null) { return $this->matrix; } $source = $this->getLuminanceSource(); $width = $source->getWidth(); $height = $source->getHeight(); if ($width >= self::$MINIMUM_DIMENSION && $height >= self::$MINIMUM_DIMENSION) { $luminances = $source->getMatrix(); $subWidth = $width >> self::$BLOCK_SIZE_POWER; if (($width & self::$BLOCK_SIZE_MASK) != 0) { $subWidth++; } $subHeight = $height >> self::$BLOCK_SIZE_POWER; if (($height & self::$BLOCK_SIZE_MASK) != 0) { $subHeight++; } $blackPoints = self::calculateBlackPoints($luminances, $subWidth, $subHeight, $width, $height); $newMatrix = new BitMatrix($width, $height); self::calculateThresholdForBlock($luminances, $subWidth, $subHeight, $width, $height, $blackPoints, $newMatrix); $this->matrix = $newMatrix; } else { // If the image is too small, fall back to the global histogram approach. $this->matrix = parent::getBlackMatrix(); } return $this->matrix; } /** * Calculates a single black point for each block of pixels and saves it away. * See the following thread for a discussion of this algorithm: * http://groups.google.com/group/zxing/browse_thread/thread/d06efa2c35a7ddc0 */ private static function calculateBlackPoints( $luminances, $subWidth, $subHeight, $width, $height ) { $blackPoints = fill_array(0, $subHeight, 0); foreach ($blackPoints as $key => $point) { $blackPoints[$key] = fill_array(0, $subWidth, 0); } for ($y = 0; $y < $subHeight; $y++) { $yoffset = ($y << self::$BLOCK_SIZE_POWER); $maxYOffset = $height - self::$BLOCK_SIZE; if ($yoffset > $maxYOffset) { $yoffset = $maxYOffset; } for ($x = 0; $x < $subWidth; $x++) { $xoffset = ($x << self::$BLOCK_SIZE_POWER); $maxXOffset = $width - self::$BLOCK_SIZE; if ($xoffset > $maxXOffset) { $xoffset = $maxXOffset; } $sum = 0; $min = 0xFF; $max = 0; for ($yy = 0, $offset = $yoffset * $width + $xoffset; $yy < self::$BLOCK_SIZE; $yy++, $offset += $width) { for ($xx = 0; $xx < self::$BLOCK_SIZE; $xx++) { $pixel = ((int)($luminances[(int)($offset + $xx)]) & 0xFF); $sum += $pixel; // still looking for good contrast if ($pixel < $min) { $min = $pixel; } if ($pixel > $max) { $max = $pixel; } } // short-circuit min/max tests once dynamic range is met if ($max - $min > self::$MIN_DYNAMIC_RANGE) { // finish the rest of the rows quickly for ($yy++, $offset += $width; $yy < self::$BLOCK_SIZE; $yy++, $offset += $width) { for ($xx = 0; $xx < self::$BLOCK_SIZE; $xx++) { $sum += ($luminances[$offset + $xx] & 0xFF); } } } } // The default estimate is the average of the values in the block. $average = ($sum >> (self::$BLOCK_SIZE_POWER * 2)); if ($max - $min <= self::$MIN_DYNAMIC_RANGE) { // If variation within the block is low, assume this is a block with only light or only // dark pixels. In that case we do not want to use the average, as it would divide this // low contrast area into black and white pixels, essentially creating data out of noise. // // The default assumption is that the block is light/background. Since no estimate for // the level of dark pixels exists locally, use half the min for the block. $average = (int)($min / 2); if ($y > 0 && $x > 0) { // Correct the "white background" assumption for blocks that have neighbors by comparing // the pixels in this block to the previously calculated black points. This is based on // the fact that dark barcode symbology is always surrounded by some amount of light // background for which reasonable black point estimates were made. The bp estimated at // the boundaries is used for the interior. // The (min < bp) is arbitrary but works better than other heuristics that were tried. $averageNeighborBlackPoint = (int)(($blackPoints[$y - 1][$x] + (2 * $blackPoints[$y][$x - 1]) + $blackPoints[$y - 1][$x - 1]) / 4); if ($min < $averageNeighborBlackPoint) { $average = $averageNeighborBlackPoint; } } } $blackPoints[$y][$x] = (int)($average); } } return $blackPoints; } /** * For each block in the image, calculate the average black point using a 5x5 grid * of the blocks around it. Also handles the corner cases (fractional blocks are computed based * on the last pixels in the row/column which are also used in the previous block). */ private static function calculateThresholdForBlock( $luminances, $subWidth, $subHeight, $width, $height, $blackPoints, $matrix ): void { for ($y = 0; $y < $subHeight; $y++) { $yoffset = ($y << self::$BLOCK_SIZE_POWER); $maxYOffset = $height - self::$BLOCK_SIZE; if ($yoffset > $maxYOffset) { $yoffset = $maxYOffset; } for ($x = 0; $x < $subWidth; $x++) { $xoffset = ($x << self::$BLOCK_SIZE_POWER); $maxXOffset = $width - self::$BLOCK_SIZE; if ($xoffset > $maxXOffset) { $xoffset = $maxXOffset; } $left = self::cap($x, 2, $subWidth - 3); $top = self::cap($y, 2, $subHeight - 3); $sum = 0; for ($z = -2; $z <= 2; $z++) { $blackRow = $blackPoints[$top + $z]; $sum += $blackRow[$left - 2] + $blackRow[$left - 1] + $blackRow[$left] + $blackRow[$left + 1] + $blackRow[$left + 2]; } $average = (int)($sum / 25); self::thresholdBlock($luminances, $xoffset, $yoffset, $average, $width, $matrix); } } } private static function cap($value, $min, $max) { if ($value < $min) { return $min; } elseif ($value > $max) { return $max; } else { return $value; } } /** * Applies a single threshold to a block of pixels. */ private static function thresholdBlock( $luminances, $xoffset, $yoffset, $threshold, $stride, $matrix ): void { for ($y = 0, $offset = $yoffset * $stride + $xoffset; $y < self::$BLOCK_SIZE; $y++, $offset += $stride) { for ($x = 0; $x < self::$BLOCK_SIZE; $x++) { // Comparison needs to be <= so that black == 0 pixels are black even if the threshold is 0. if (($luminances[$offset + $x] & 0xFF) <= $threshold) { $matrix->set($xoffset + $x, $yoffset + $y); } } } } public function createBinarizer($source): \Zxing\Common\HybridBinarizer { return new HybridBinarizer($source); } }